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I. Introduction 

The r o l e  of ro t a t ion  and magnetic f i e lds  i n  cosmical f l u i d  dynamics 

is  wel l  known. Recently, some a t ten t ion  has been given by several  

authors c1-71 on the  in te rac t ion  of Coriolis forces  and Lorentz forces  

on flow phenomena. 

It is  generally accepted [1,21 t h a t  hydromagnetic flow i n  the  

e a r t h ' s  l i qu id  core is somehow responsible f o r  the  main geomagnetic 

f i e l d ,  and therefore  a theory of t he  dynamics of core motions is  

required i n  order t o  understand a plausible theory of the  e a r t h ' s  magnetic 

f i e l d .  It has been suggested t h a t  the  near coincidence between the  

geographic and geomagnetic poles i s  the  r e su l t  of t h e  strong influence 

of Coriol is  forces,  due t o  the  e a r t h ' s  rotat ion,  on motions i n  the  core. 

So much of meteorology depends ult imately upon the  dynamics of 

a revolving f l u i d .  The large-scale and moderate motions of t he  atmosphere 

are  g rea t ly  affected by the  ro ta t ion  of t he  ear th .  Kelvin i s  sa id  
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t o  have pointed out 181 tha t  ro ta t ion  confers on a f l u i d  cer ta in  

propert ies  resembling those of an e l a s t i c  so l id ,  and a ro ta t ing  

f l u i d  can t r a n s m i t  waves. 

as a r i g i d  body about an axis, t he  amount of energy possessed by the 

l i qu id  i s  i n f i n i t e  and it is of great  i n t e re s t  t o  know how s m a l l  

disturbances propagate i n  such a l iqu id .  

In t h e  case of an i n f i n i t e  l iquid,  ro ta t ing  

To understand some of these phenomena, it w i l l  be in te res t ing  

t o  s t u d y  t h e  flow of a ro ta t ing  f l u i d  around elementary bodies. 

We consider here s m a l l  osc i l la t ions  of a sphere i n  a compressible, 

viscous, e l e c t r i c a l l y  conducting and rotat ing medium i n  the  presence 

of a uniform magnetic f i e l d .  In addition t o  the  above mentioned 

in t e re s t s ,  t h i s  problem may have some applications i n  connection with 

t h e  transmission of sound by fog [see 9, p.  6591. 

rz- 

\I 

L 
The c l a s s i c a l  problem of t he  osc i l la t ion  of a sphere i n  a viscous 

f l u i d  was f irst  considered by Stokes [g, p. 6431. 

experienced by t h e  sphere i s  ( i n  dimensionless form)* 

The drag force 

It is  t h e  purpose of the  present investigation t o  determine the  

e f f e c t s  of t h e  magnetic f i e ld ,  compressibility, c o r i o l i s  forces and t h e i r  

Vhe  dimensionless quant i t ies  and parameters i n  (1) are  explained 
i n  sec t ion  11. 
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mutual i n t e rac t ion  on the  drag and other physical var iables .  

of t he  motion of t h e  f l u i d  i n  the  magnetic f i e ld ,  an associated e l e c t r i c a l  

f i e l d  i s  produced which, according t o  Ohm's l a w  s e t s  up e l e c t r i c a l  currents  

i n  t h e  f l u i d  i f  t he  l a t te r  is  a conductor. The in te rac t ion  of these 

currents  with the  magnetic f i e l d  then produces a body force which must  

be included i n  the  Navier-Stokes equations f o r  t he  motion of t he  f l u i d .  

The e f f e c t  of t h i s  body force i s  t o  inh ib i t  t he  motion of t he  f l u i d  

across t h e  l i n e s  of force.  The viscous e f fec t  gives r i s e  t o  viscous 

d i s s ipa t ive  waves, the magnetic e f f ec t  is  responsible f o r  Alf&n waves 

while t h e  compressibil i ty and ro ta t ion  produce sound and the  so-called 

Taylor waves respectively.  Their mutual in te rac t ion  w i l l  make the  

s i t ua t ion  even more complicated. I n  the  next sect ion,  w e  make several  

assumptions t o  m a k e  the  problem mathematically more amenable. 

Because 



11. Fundamental Equations and Formulation of t h e  Problem 

Let the  sphere osc i l l a t e  along the  axis of t he  ro ta t ing  f l u i d  

which is  taken t o  be t h e  x-axis. The or igin is  at the  mean pos i t ion  of 

t h e  center  of t he  sphere. 

The equations of motion of a compressible, viscous, unbounded f l u i d  

ro t a t ing  with a constant angular ve loc i ty  oi, re fer red  t o  a ro ta t ing  

frame of reference are  ( i n  m.k.s. u n i t s )  

Let the  uniform magnetic f i e l d  be Hoi .  - 

d v  
a t  - V p + p c u r l  H X H  + p + 2 p R x v + p R x (g x 2) = - -  - - -  

(2  1 
+ p v V 2 v + - - d i v v  P V  

- 3  - 3  

where p is  the  density, - v the  ve loc i ty  of t h e  f lu id ,  - H is  t o t a l  magnetic 

f i e l d ,  p i s  the  pressure, r is  the r a d i a l  coordinate: r2 = f + z2, 

V the kinematic v i scos i ty  (assumed constant) and p the  magnetic 

permeability (assumed constant ) . 

The equation of continuity i s  

a P  
- a t  d iv  {P v) + - = o . 

The physical equation ( the conduction of heat is neglected) i s  



(where 7 denotes the  r a t i o  of two spec i f i c  hea ts )  which can be 

wr i t t en  as [ g ,  p. 6541 

0 0 
p = p + P  c 2 s ,  

0 0  where c is  t h e  ve loc i ty  of sound i n  the absence of v i scos i ty ,  p , P 

represent pressure and density i n  the  undisturbed state and s denotes 

the  condensation 

P = P O  (1 + s )  . 

Maxwell's equations with the usual natat ion f o r  electromagnetic 

quant i t ies  are 

(ii) div - H = 0, 

( i v )  div - E = 0, 

where the  e l e c t r i c a l  conductivity CT i s  t r ea t ed  as constant. 

From (i), (iii) and (v )  we obtain 

a H  1 - -  - c u r l  (V  k g) = - V2 H . 
P O  - a t  - 

(4)  

( 5 )  
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As i n  t h e  c l a s s i c a l  problem, t h e  convective terms i n  (2) w i l l  henceforth 

be neglected. This i s  j u s t i f i e d  i f  

where v i s  the  ve loc i ty  of t he  sphere and a i s  i t s  radius.  
S 

Further l i nea r i za t ion  of ( 2 )  and ( 3 )  is possible by means of ( 5 )  

which y i e lds  

v d iv  v 
0 Po v + p  v v ' v + -  - 

- 3  

and 

a s  
- a t  d i v v + -  = 0 . 

( 9 )  

These equations w i l l  be now reduced t o  a dimensionless form by r e fe r r ing  

t h e  length t o  a, t h e  radius of t he  sphere, t he  ve loc i ty  t o  ah (h/2T 

is  the  frequency of the  osc i l l a t ion ) ,  t h e  t i l n e  t o  1/A, the  magnetic 

f i e l d  t o  Ho, the  e l e c t r i c  f i e l d  t o  paX-Io 

- J t o  Ho/a and t h e  pressure t o  p 

become 

, t he  current densi ty  

0 
a' A'. The equations ( 6 ) ,  ( 7 )  then 



(i)  c u r l  - H = 2, 
a H  (iii) c u r l  E = - - - a t J  

(v )  c u r l  H = Rm [E - - -  -k v )(HI 

(ii) div - H = 0, 

( i v )  div - E = 0, 

- 

where 

R (Magnetic Reynolds number) = a2 h 0 . m 

In  addition, we introduce the  following parameters: 

I Re (Reynolds number)* = a' h/u 

*It should be noted t h a t  w e  have used a h  as ve loc i ty  i n  the  
def in i t ion  of t he  Reynolds number. There s t i l l  i s  another important 
dimensionless parameter a/a, where CY i s  the amplitude of t h e  
osc i l la tory  motion of t h e  sphere. It i s  assumed t h a t  t h i s  quantity 
i s  small compared t o  unity.  

The ve loc i ty  of sphere is  vs i = cy 1 e iht -9 i or  i n  dimensionless - 
form, us = cu/a e i t  - i. 

The Reynolds number fo r  t he  flow might a l s o  have been defined 
as 

I 

It is necessary t h a t  

Rs << 1 , 
whereas t h e  requirement f o r  is l e s s  severe. 
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02 

p"a2 h2 B (magnetic pressure number) = ' , 

t he  r a t i o  of t he  magnetic pressure t o  dynamic pressure, and 

the  inverse of t he  so-called Rossby number Ro = h/@R)  = 116. 

of these parameters, equations ( 9 )  and (10) reduce t o  

In terms 

a v  1 i - - 1 + 6 i x v  = B c u r l H X H + -  V ' v - ( c 2 + - ) ~ s  
% -  3 Re 

- -  - -  a t  

and 

where ve loc i ty  of sound c 

a h  and i f  we assume t h a t  

i s  now i n  non-dimensional form refer red  t o  

R >>1 , 
0 

so as t o  neglect second and higher powers of 6, t h e  cent r i fuga l  force 

i n  ( 9 )  being of 0 (6') i s  dropped+ in  (15). 

(17) 

~ 

*Notice t h a t  f o r  la rge  values of r ad ia l  distance,  our neglecting 
cent r i fuga l  force may not be j u s t i f i e d  even though b2 i s  negl igible .  
In the Incompressible case, it presents no d i f f i c u l t y  since it can be 
absorbed with pressure term. However, in  Compressible case, t h i s  cannot 
be done. But since w e  are primarily interested i n  the  e f f e c t s  of 
Coriol is  forces  on the  motion, following the  standard procedure i n  such 
cases (see f o r  example Hide and Roberts 1 S O  121 and Ta lwar  1964 [?I), 
cent r i fuga l  force may be ignored. 
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The boundary conditions on v are = us 2 on the  surface of the - 
sphere and is zero at in f in i ty .  If the  conductivity 0 '  of t h e  sphere* 

i s  comparable t o  the  conductivity 0 of the  f lu id ,  we require t h a t  

- H should be continuous across t h e  surface of t he  sphere, while a t  i n f in i ty ,  

We next make two important assumptions: 

(1) The magnetic Reynolds number R i s  a small parameter. m 

W e  can then f ind  a perturbation solut ion for  s m a l l  R . This i s  a 

va l id  assumption i n  most p rac t i ca l  problems and t h i s  technique has been 

m 

adopted i n  severa l  discussions (see f o r  example, Ludford [lo] and 

Tamada [Ill). 

(2)  The magnetic pressure is comparable t o  dynamic pressure, 

i .e.  we assume B = 0(1). 

W e  assume an expansion i n  powers of R m' 

H - H f Rm - H1 f --- 
-0 

S 

*The discussion w i l l  be va l id  even if the  sphere i s  an insu la tor .  We 
assume t h a t  t he  permeabili t ies of the sphere and the  f l u i d  are equal.  

*These conditions imply tha t  the tangent ia l  components of e l e c t r i c  
f i e l d  w i l l  be continuous across the  sphere and t h a t  - E = 0 at i n f i n i t y .  
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and obtain a set of equations fram (111, (D), (15) and (16) with 

appropriate boundary conditions. It should be noted t h a t  some of t h e  

complications which arise from boundary conditions i n  magneto-gas- 

dynamics are conveniently absent i n  t h i s  problem. 
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111. Solution of the Resulting Equations 

Zeroth Order Equations 

(i) c u r l  H = 0, div H = 0, tha t  i s  the magnetic f i e l d  t o  

t h i s  order i s  independent of the f l u i d  velocity.  The same equations 

-0 -0 

hold inside the  sphere and the  boundary conditions are  t h a t  go = - i a t  

i n f i n i t y  and it is continuous across the surface of the  sphere. The 

solut ion is, therefore ,  

H E  i .  - -0 

(ii) The e l e c t r i c  f i e l d  Eo s a t i s f i e s  c u r l  E = 0, div E = 0, 
-0 -0 

both i n  the  f l u i d  and the  sphere. The continuity of the  tangent ia l  

e l e c t r i c  f i e l d  on the  surface of the  sphere and vanishing of Eo a t  

i n f i n i t y  implies 

E - 0 .  
-0 

(iii) The zeroth order flow f i e lds  and pressure f i e l d s  

are  unaffected by the magnetic f i e l d  and are  given by)c 

k2-h2 (v2 f h2)v = - i(,-p- ) v so - 6 Re vo X 2 
-0 

( 2 0 )  

CY it *The boundary condition v = u i = - e - i on the  surface of the  
s -  a - 

sphere and the  l i n e a r i t y  of the system of d i f f e r e n t i a l  equations imply 
t h a t  the only t i m ?  dependence of the  physical var iables  is  a f ac to r  e l t .  
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ana 

d i v v  = - i s  
-0 0 

where 

h2 = - i R e ,  

As i n  t h e  non-rotating case, w e  --ave here axial symmetyy i n  t h a t  

t he  physical var iables  are independent of t h e  azimuthal coordinate cp. 

However, t h e  azimuthal components of veloci ty  and magnetic f i e l d  w i l l  

be non-zero here i n  contrast  t o  the non-rotating case i n  which v and 

H were zero.  

* 

cp 

cp 

From (21) and (22) it follows t h a t  vcx = 0(1), vor = O(1) and 

v = O ( 6 )  and hence 
orp 

(02 + k2) s 0 = O(S2) . 

(23) 

(24) 

It follows t h a t  the  coupled equations (21) can be simplified i n  t h i s  

case. In f a c t ,  i n  view of (17) and (25), vGx and v s a t i s f y  ident ica l ly  or 

*(r, 9, X )  are t h e  cy l indr ica l  coordinates. 
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t h e  same system of equations and boundary conditions as i n  the  non- 

ro t a t ing  case. The solut ion i s  therefore  [ g ,  p. 6561 

(i) so = A x f l  (k R )  

(26 
C v s  + v  i (ii) v = - 

-0 k2 o -0 

where the  first t e r m  i n  (ii) is a par t icu lar  i n t eg ra l  of (21) and (22) 

and the  last  term 

V C 
-0 2 

= B[2fo(hR) v x - h2R5f (m) g31 , 

is  the  complementary function. 

coordinates. 

(R, 8, cp) *  are the  spherical  polar 

The function fn(5 1, defined as 

n - i 5  l a  e 
f n  ( 5 )  = (- - 5 Y 

represents spher ica l  waves with rapidly diminishing amplitude-the one 

with argument 5 = h R denotes boundary layer e f f e c t s  (viscous) while 

the  one with argument 5 = k R e s sen t i a l ly  represents compressibil i ty 

e f f ec t s  (sound waves). The constants A and B are given by 

(27) 

* x = R cos 8, r = R s i n  8 .  
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(29)  
kf l ' ( k )  us 

3L2kf l (h) f l ' (k )  + h f l ' ( h ) i k f l ' ( k )  +- f l ( k ) J J  B =  

Now v 

f a c t ,  exac t ly  similar arguments can be applied while determining 

H1 and - v1 t o  show t h a t  only azimuthal components H 

affected by ro ta t ion .  In view of t h i s  decoupling of the  system of equations, 

t h e  r o t a t i o n a l  e f fec ts ,  which only generate azimuthal components of 

ve loc i ty  and magnetic f i e ld ,  are  discussed i n  Appendix and henceforth, 

w e  would only consider non-rotating case. 

can be determined i n  a straight-forward manner from (21).  In 
otp 

4p and v49 are - 

- F i r s t  Order Equations 

(i) The f i rs t  order magnetic f i e l d  21 s a t i s f i e s  

d iv  H1 = 0, - 

whose so lu t ion  is 
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where the  f i rs t  term i s  the  complementary function 

and the  remaining terms represent a par t icu lar  i n t eg ra l .  

On the  other hand, inside the  sphere, c u r l  c u r l  H1 = 0, div H1 = 0, - - 
which shows t h a t  the  sphere a c t s  l i k e  an insulator  up t o  t h i s  order. 

It follows t h a t  

inside the  sphere. 

by the  requirement t h a t  - H1 is  continuous across the surface of the  

sphere. 

The constants C and D i n  (30a) and (31) are  determined 

(ii) Finally,  the f i r s t  order flow f i e l d s  and pressure f i e l d s  

are  given by 

div v1 = - i SI - 

from which it follows tha t  
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W e  have the re f  ore 

where the  first term 

i s  the  complementary function of (33) and t he  remaining terms are a 

pa r t i cu la r  integral ;  and 

Here t h e  first term 

C C i s  the  x-component of t h e  complementary function vo given 
*OX 

by ( 2 7 ) .  



v - 

is  the  
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complimentary function of (32) and the  remaining terms are a 

pa r t i cu la r  in tegra l .  

by the  requirement t h a t  - v1 = 0 a t  R = 1. 

The constants El, E2, F1 and F2 are  determined 

The follQwi-ng points  a re  worth noting i n  our solution: 

(a )  The terms ( l i k e  f n ( h R ) )  containing the  coef f ic ien ts  

By F1 and Fz represent t he  compressibility e f f e c t s  on viscous waves. 

(b )  The terms ( l i k e  f n ( k R ) )  containing the coef f ic ien ts  A, 

El and E2 represent viscous e f fec ts  on sound waves. 

( e )  The terms corresponding t o  the coef f ic ien ts  C and D 

represent t he  po ten t i a l  par t  of the magnetic f i e l d .  

A t  t h i s  point,  we would discuss i n  some more d e t a i l  the  case when 

the  f l u i d  i s  incompressible. 
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IV. Incompressible Case 

The so lu t ion  i n  t h i s  case can be obtained from the  above i n  the  

l i m i t  as c - + a ( i . e . ,  k + O ) ,  s + 0 and c2s + p. ( T i $ )  

, It i s  c l ea r  t h a t  w e  w i l l  s t i l l  have terms (a )  and ( e )  and t h e  

corresponding coef f ic ien ts  w i l l  be i n  the l i m i t :  

Evidently waves (sound) represented by (b )  w i l l  no l o n g c r  he 

present and the  corresponding terms from ( b )  can be obtained by t h e  

l imi t ing  process (38) : 

_. 

+ - Bh2R3f3(hR) i 
LR4 5 



where 

A i  = - i h2 B f2 (h) 
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Next, we can wri te  down the  t o t a l  drag experienced by the sphere* 

The terms i n  the  curly brackets represent the  non-magnetic e f f ec t ,  

while t he  last term i n  each square bracket represents  a hydromagnetic 

e f f e c t .  The f irst  square bracket gives a f r i c t i o n a l  force varying as 

the  veloci ty:  t he  f irst  term i s  the  Stokes drag f o r  t he  c l a s s i c a l  

problem i n  which the  sphere undergoes motion of t rans la t ion ;  t h e  second 

t e r m  i s  the  osc i l l a to ry  e f f ec t  i n  non-magnetic case; the  t h i r d  term 

is  hydromagnetic, non-viscous, osc i l la tory  e f f e c t  and the  last term 

i s  hydromagnetic viscous e f fec t  due t o  osc i l la t ion .  

tend5 t o  increase the  resis tance.  

The magnetic f i e l d  

The second square bracket gives the  correct ion t o  the  i n e r t i a  of 

t he  sphere. This amounts t o  t h e  f rac t ion  

*There w i l l  be no contribution of the Maxwell s t r e s s  t o  the  order 
w e  a r e  in te res ted  in ,  as there  are  no currents on the surface of t h e  sphere: 



- 21 - 

of the  mass of f l u i d  displaced, instead of $ as i n  the  f r inc t ion less ,  

non-magnetic case. The e f f ec t  of t he  magnetic f i e l d  is  t o  decrease 

the  apparent mass of the  f lu id .  

Although t h e  derivations s t r i c t l y  do not hold f o r  t h i s  case, w e  

may consider t he  value Re -, O3 while a t  the same t i m e  keeping R 

We then  f i n d  

<< 1. 
S 

a r e s u l t  which can be checked i n  a straight-forward manner from the  

corresponding hydromagnetic inviscid problem. The non-magnetic p a r t  

provi6es t h e  i n e r t i a  e f f e c t  and the  magnetic pa r t  contributes t o  t he  

f r i c t i o n a l  pa r t  of the  drag. 

When the  period i s  made i n f i n i t e l y  long, t he  drag reduces t o  

the  Stokes drag i n  the  c l a s s i c d  problem i n  which the  sphere moves 

uniformly i n  a s t r a i g h t  l i n e .  This i s  understandable because as 

A + 0, the  uniform magnetic f i e l d  H 

view of 

0 should a l s o  approach zero i n  

and s o  t h e  magnetic e f f e c t  i s  absent i n  t h i s  l i m i t .  
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V. Discussion 

F i r s t  w e  w i l l  discuss t h e  conditions under which our analysis  

can be expected t o  give a close approximation t o  the  t r u e  flow. 

We have neglected the  displacement current i n  comparison w i t h  

t he  conduction current,  which is ju s t i f i ed  i f  

a2 A2 << 1 , 7 

which follows from the order of magnitudes of t he  various terms i n  the  

Maxwell equation (6, i )  where L i s  the  veloci ty  of l i g h t .  

s a t i s f i e d  by a l l  hydromagnetic flow problems i n  the laboratory.  An 

associated condition, t h a t  t he  excess charge may be neglected, is  a l s o  

s a t i s f i e d  i f  (42 ) holds. 

This is 

A s  i n  the  c l a s s i c a l  problem, the  convective terms have been neglected. 

This i s  j u s t i f i e d  iP 

CY << a (43 1 

(where CY is the  amplitude of t he  osc i l l a t ion  and a i s  t h e  radius of the  

sphere ), provided 

*This condition j u s t i f i e s  the  omission of convective terms both 
i n  zeroth order and f irst  order approximations as can be seen by the  
orders of magnitudes of various terms involved i n  t h e  momentum equation. 
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which follows from (l5), remembering t h a t  s -+ 0, e's + p i n  the  Incompres- 

s i b l e  case. 

i n  m . k . s .  units and hence we must make 

For common l iqu ids  i n  hydromagnetic experiments, v = 0(10-6) 

Next, i n  the  zeroth order approxiaation of the  momentum equaLion, 

we neglected the  Lorentz force J X B = l3 c u r l H  X H. This i s  j u s t i f i e d  i f  - -  - -  

and 

In  the  case of l i qu id  Sodium and Mercury, f o r  example, po = O(1) 

and s o  (46 ) follows i n  view of (44a).  Condition (45) implies t h a t  

magnetic pressure i s  a t  most comparable t o  dynamic pressure, which 

holds f o r  weak f i e l d ,  say 50 gauss or less .  I n  short ,  our  analysis  

i n  va l id  f o r  the  osc i l la t ions  of small globules i n  the  presence of 

weak magnetic f i e lds .  

The following t a b l e  gives some typ ica l  values of these  parameters 

f o r  Mercury, Liquid Sodium and Saturated S a l t  Water at 25OC when 



- 24 - 

0 a = .05 em, B = 25 gauss, h = 25.  

Finally,  t o  study the  nature and properties of t he  solut ion,  it 

w i l l  be convenient t o  introduce the  stream functions a n d 3  

of brevi ty ,  w e  wri te  the  r e s u l t s  here i n  a shor te r  form: 

(where the  terms under the  bar  represent the non-magnetic pa r t ) ;  

*The wave-like term exp [- (l+i )&-(R-l) 1 comes from the  functions 

fn(hR)  defined by (28 ) .  
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cy 01 , b l  + t Rm ;E a7 + - i B Rm 4 

CY and b2 + - - 3 R -  20 m a  ' 

If is  t h e  corresponding function f o r  the magnetic l i n e s  of force 

inside the  sphere, 

S 

- - - 1 c y  - R R3 case sin28 e it , 3 s  1 0 a  m 

which is current-free and hence up t o  t h i s  approximation, t h e  sphere 

a c t s  l i k e  an insulator .  

From (47) and (48) it follows tha t  there are three types of terms 

i n  the  solution: 

(1) Wave-like (corresponding t o  t h e  appearance of a boundary 

l aye r ) ,  e f fec t ive  i n  a s m a l l  distance f rom t h e  surface of the  sphere 

and behaving l i k e  exp [ - ( l+ i )$@(R-l ) ] .  The nature of boundary 
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l aye r  so lu t ion  is e s sen t i a l ly  the  same i n  hydromagnetics as i n  a 

non-magnetic case. 

of v ibra t ions  propagated from the  boundary of the sphere with the  

ve loc i ty  a, but  with rapidly diminishing amplitude, t he  f a l l i n g  

off within a wave length being i n  the  r a t i o  e-2n, or 1/33?. 

l i n e a r  magnitude my important i n  all problems of o sc i l l a t ions  i n  

incompressible viscous f lu ids ,  indicates  the extent t o  which the e f f e c t s  

of v i scos i ty  penetrate i n t o  the  f l u i d .  In  the  case of Mercury i t s  

The term exp C-(l+i)&J5(~-1)1 represents a wave 

The 

I 

value is .018 ? ems, where P is the  period of o s c i l l a t i o n  i n  seconds. 
I 

For l i qu id  Sodium, the  corresponding value is  .079 $. 
(s i i2e  cos 6 sin26\ 

9 R2 (2) I r r o t a t i o n a l  - 

sin28cos28 sin28cos26 , sin26cosQ) 
R ’ R3 ( 3 )  Rotational ( -  , 

I n  the  non-magnetic case, the  motion i n  the flow f i e l d  is  e s sen t i a l ly  

i r r o t a t i o n a l  a t  l a rge  distances,  and it is an in t e re s t ing  r e s u l t  t h a t  

the magnetic f i e l d  generates vo r t i c i ty .  

i s  current f r ee ,  cos 6 s in28 
R2 In t h e  case of a magnetic f i e l d ,  t he  term 

while the  term cos8sin26 is responsible f o r  currents  at large distances.  

From (49) it follows t h a t  f o r  large distances,  t he  disturbance 

i n  the present problem d i f f e r s  only i n  amplitude and phase from the  

one generated by the  osc i l l a t ion  of a sphere i n  a f r i c t i o n l e s s  f l u i d  

i n  the  presence of a magnetic f i e l d .  
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The diagrams 1, 2 and 3 i l l u s t r a t e  the e f f ec t s  of various parameters 

on t h e  flow fields. Figure 1 shows how the drag on the  sphere var ies  as 

it osc i l l a t e s .  It a lso  shows the  influence of conductivity and v iscos i ty  

on the  drag. 

magnetic l i n e s  of force.  The v iscos i ty  tends t o  contract  the  l i n e s  of 

force.  On t h e  other hand, Figure 3 shows the  s t re tching e f f ec t  of t h e  

magnetic f i e l d  on the  stream l i n e s  (compare Figure 3 ( a )  and (b); 

( c )  and ( d ) ) .  

flow (compare Figure 3 (a )  and (c ) ;  (b) and (d)). 

Figure 2 shows the  effect  of Reynolds number Re on 

Viscosity a l so  tends t o  produce similar e f f ec t s  on the  
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Appendix 

As pointed out e a r l i e r ,  the  only e f fec t  of ro t a t ion  i n  t h i s  problem 

is t h a t  azimuthal components of v and H are affected i n  t h a t  they a re  

cp 
non-zero here i n  contrast  t o  the non-rotating case i n  which v and H 

- - 

cp 
are  zero. 

To determine v we use (21) which gives 
ocp’ 

and the boundary conditions are 

V = 0 a t  R = 1 and at in f in i ty .  
ocp 

The so lu t ion  is (using ( 2 6 ) )  

B h2 x r f l  (hR) 3 i S  
2 

- -  

where the  first term i s  the  complementary function and the  remaining terms 

are a pa r t i cu la r  in tegra l .  The constant B1 can be chosen i n  such a 

way t h a t  the  boundary condition v = 0 a t  R = 1 is  s a t i s f i e d .  
ocp 
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Next, H can be determined by 4p 

while inside the  sphere 

and we require the  continuity of H across the surface of the  sphere. 4p 

The solut ion i s  

(A5 

and inside the  sphere 

The first two  terms i n  ( A 6 )  are the  complementary function and the  remaining 

terms are  a par t i cu la r  in tegra l .  

determined by the requirement t h a t  H i s  continuous a t  R = 1. 

The constants B2, B3, C1 and C 2  are 

4p 
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Final ly ,  i s  determined by 

0 at R = 1 and a t  i n f i n i t y .  4 p =  and the  boundary conditions v 

The so lu t ion  i s  

B B i  + 15 4 F2 x r f3 (hR) ( - 4 8  + 3r2)] - e x r f l  (hR) 

where the  first two terms are the  complementary function and the  

remaining a re  a pa r t i cu la r  in tegra l .  

determined by the  requirement t h a t  v 4p = 0 at R = 1. 

The constants G1 and G2 a re  
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It i s  c l e a r  from the  above solut ion t h a t  there  w i l l  be no 

contr ibut ion of Maxwell and Viscous s t resses  (produced due t o  ro t a t ion )  

on the  drag-a r e s u l t  i n  agreement with our previous conclusions 

(see Singh, 1964 c121). 

Since the  wave-like terms f,(s) are damped heavily, it follows 

t h a t  i n  non-rotating compressible case, the flow w i l l  be e s sen t i a l ly  

current f r ee  and i r r o t a t i o n a l  at la rge  distances. Our solut ion above 

shows t h a t  t h e  e f f e c t  of ro t a t ion  w i l l  be t o  produce v o r t i c i t y  and 

current which again agrees with our conclusions i n  CUI. 

Concluding, it should be noted t h a t  the nature of wave propagat im 

remains e s sen t i a l ly  similar i n  both rotat ing and non-rotating cases. 
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